cho ab,bc (c khác 0) là các số có 2 chữ số thoả mãn điều kiện ab/a+b=bc/b+c. Chứng minh rằng b^2=ac
a, cho các số a,b,c thỏa mãn 3/a+b = 2 /b+c = 1 / c+ (giả thuyết các tỉ số đều có nghĩa ) Tính giá trị biếu thức P = a + b - 2019c/ a + b + 2018c
b, Cho ab,ac ( c khác 0 ) là các số thỏa mãn điều kiện ab/a+b = bc / b+c
cho các số a,b,c,d thỏa mãn điều kiện ab/cd=a^2+b^2/c^2+d^2 chứng minh ad=bc hoặc ac=bd
Bài 1: Choa;b;c là các số khác 0 và a^2= bc; b^2= ab; c^2=ac.Cmr a=b=c
Bài2: Cho a;b;c là các số khác 0 thỏa mãn ab+ac/2=bc+ba/3=ca+cb/4. Chứng tỏ : a/3= b/5=c/15
Cho hai số ab ,ác là số có hai chú số thoả mãn điều kiện ab\ α+b=bc\b+c.
Chứng minh b^2=ac
Cho ab , bc \(\left(c\ne0\right)\)là các số có 2 chữ số thỏa mãn điều kiện: \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)
CMR: b2 = ac
Cho ab , bc \(\left(c\ne0\right)\)là các số có 2 chữ số thỏa mãn điều kiện: \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)
CMR: b2 = ac
1) Cho các số dương a và b thỏa mãn điều kiện a100+b100=a101+b101=a102+b102
Chúng minh: \(\frac{a+b}{ab}=\frac{a^2+b^2}{a^2b^2}\)
2) Cho a,b,c là các số khác 0 thỏa mãn điều kiện \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{c+a}\)
Tính: (a-b)3+(b-c)3+(c-a)3
cho a,b,c là các số nguyên thỏa mãn điều kiện a^2 -1 = ab+ac-bc
. cmr b=c