bài này chưa đủ điều kiện của a và b để tính ra giá trị cụ thể. Cần thêm điều kiện của a và b
bài này chưa đủ điều kiện của a và b để tính ra giá trị cụ thể. Cần thêm điều kiện của a và b
cho ab=1 . Tính \(\left(a^3+b^3\right).\left(a^2+b^2\right)-ab\)
Cho ab=1 và a+b≠0. Tính
\(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Chứng minh: \(a^3+b^3+c^3-3abc\ge0\) với a, b, c không âm bằng nhiều cách (dùng biến đổi tương đương)
Giải:
Cách 1: \(VT=\left(a+b+c\right)\left[\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b-2c\right)^2\right]\ge0\)
Cách 2: \(VT=\left(\sqrt{a^3}-\sqrt{b^3}\right)^2+\left(c-\sqrt{ab}\right)^2\left(c+2\sqrt{ab}\right)\ge0\)
Cách 3:\(VT=\frac{3c\left(a-b\right)^2\left(a^2+ab+b^2\right)^2}{\left(\sqrt[3]{16\left(a^3+b^3\right)^2}\right)^2+\left(\sqrt[3]{16\left(a^3+b^3\right)^2}\right)ab+4a^2b^2}+\left(c-\sqrt[3]{\frac{\left(a^3+b^3\right)}{2}}\right)^2\left(c+2\sqrt[3]{\frac{a^3+b^3}{2}}\right)\ge0\) P/s: Đừng để ý.
\(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3-a^3-b^3-c^3\)
\(=a^3+3a^2b+3ab^2+b^3+3c\left(a^2+2ab+b^2\right)+3ac^2+3bc^2-a^3-b^3\)
\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)
\(=3\left(a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc\right)\)
\(=3\left[\left(a^2b+ab^2\right)+\left(a^2c+abc\right)+\left(ac^2+bc^2\right)+\left(b^2c+abc\right)\right]\)
\(=3\left[ab\left(a+b\right)+ac\left(a+b\right)+c^2\left(a+b\right)+bc\left(a+b\right)\right]\)
\(=3\left(a+b\right)\left(ab+ac+c^2+bc\right)\)
\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+b\right)\)
1. Cho \(4a^2+b^2=5ab\) và 2a>b>0
Tính \(A=\frac{ab}{4a^2-b^2}\)
2.Cho \(2x^2+2y^2=5xy\)và x>y>0
Tính \(A=\frac{x+y}{x-y}\)
3.Cho \(a^3+b^3+c^3=3ab\)
Tính \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
4. Cho \(a+b+c=0\left(a,b,c\ne0\right)\)
Rút gọn: \(A=\frac{ab}{a^2+b^2-c}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
5.Cho \(a\ne b,b\ne c,c\ne a\)và ab+bc+ac =1
Tính \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
Lm đc càng nhiều càng tốt nha. Giúp mk vs nha!!
Cho các số thực a, b, c đôi một khác nhau thỏa mãn ab + bc + ca = 1. Tính giá trị của biểu thức:\(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{^{\left[ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\right]^2}}\)
cho ab +bc+ca=0
tính\(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
tính: \(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(a^2+ab-c^2-bc\right)}\)
Tính (phân thức)
a)\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)