Cho các số nguyên dương a > b thỏa mãn: ab − 1 và a + b nguyên tố cùng
nhau; ab + 1 và a − b nguyên tố cùng nhau. Chứng minh rằng: (a + b)^2 + (ab-1)^2 không phải là một số chính phương.
giả sử a,b là 2 số nguyên tố cùng nhau với 3 và a+b chia hết cho 3
chứng minh rằng x2+xb+1 chia hết cho x2+x+1
giả sử a,b là 2 số nguyên tố cùng nhau với 3 và a+b chia hết cho 3
chứng minh rằng x2+xb+1 chia hết cho x2+x+1
Cho a , b ,c là 3 số nguyên dương và nguyên tố cùng nhau thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\). Chứng minh rằng a + b là số chính phương.
CMR:Nếu a và b là 2 số nguyên tố cùng nhau thì : A=8a+3b và B=5a+2b nguyên tố cùng nhau
a) CMR : a và a^5 có cùng chữ số tận cùng
b) cho a là số nguyên tố lớn hơn 3 . chứng minh: a^2 -1 chia hết cho 24
Cho các số nguyên dương a;b;c nguyên tố cùng nhau thoả mãn:
(a+b)c=ab . Chứng minh rằng a+b là số chính phương .
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42