bn lên gg surt "Quy nạp theo công thức truy hồi" nhé
bn lên gg surt "Quy nạp theo công thức truy hồi" nhé
Cho biểu thức: \(S_n=\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}-1\right)^n\)
(với n nguyên dương)
a. Tính \(S_{2;}S_3\)(cái này mình tính được)
b.Chứng minh rằng: Với mọi m,n nguyên dương và m>n, ta có: \(S_{m+n}=S_m\cdot S_n-S_{m-n}\)
c. Tính \(S_4\)
Với số tự nhiên n , \(n\ge3\)
Đặt \(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
Chứng minh rằng \(S_n< \frac{1}{2}\)
Với mỗi số nguyên dương \(n\le2008\), đặt \(S_n=a^n+b^n\), với \(a=\frac{3+\sqrt{5}}{2};b=\frac{3-\sqrt{5}}{2}\)
CMR: với \(n\le1\), ta có \(S_{n+2}=\left(a+b\right)\left(a^{n+1}+b^{n+1}\right)-ab\left(a^n+b^n\right)\)
cho \(S_n=\left(\frac{3+\sqrt{5}}{2}\right)^n+\left(\frac{3-\sqrt{5}}{2}\right)^n-2\)là một số tự nhiên
Tìm số tự nhiên n để Sn là số chính phương
chứng minh \(S_n-2=\left(\left(\frac{\sqrt{5}+1}{2}\right)^n-\left(\frac{\sqrt{5}-1}{2}\right)^n\right)^2\) .Tìm tất cả các số n để \(S_n-2\)là số chính phương
Với mỗi số nguyên dương \(n\le2008\)
Đặt \(S_n=a^n+b^n\) với \(a=\frac{3+\sqrt{5}}{2}\) và \(b=\frac{3-\sqrt{5}}{2}\)
CMR với \(n\ge1\) ta có \(S_n-2=\left[\left(\frac{\sqrt{5}+1}{2}\right)^n-\left(\frac{\sqrt{5}-1}{2}\right)^n\right]^2\)
Với mỗi số nguyên dương \(n\le2008\), đặt \(S_n=a^n+b^n\) với \(a=\dfrac{3+\sqrt{5}}{2},b=\dfrac{3-\sqrt{5}}{2}\). CMR: Với mọi n thỏa mãn điều kiện đề bài, Sn là số nguyên.
Câu 4:
a. Chứng minh rằng: \(\sqrt{22-12\sqrt{2}}\) + \(\sqrt{6+4\sqrt{2}}\) = 4\(\sqrt{2}\)
b. Chứng minh rằng: \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\) = \(\sqrt{n+1}\) - \(\sqrt{n}\)