Tìm a,b,c biết
a, \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2< =0\)
b,\(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6< =0\)
c,\(\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+19\right)^6< =0\)
d,\(\left(7b-3\right)^4+\left(21a-6\right)^4+\left(18c+5\right)^6< =0\)
Cho a=-6,b=-3,c=-4a=−6,b=−3,c=−4. Tính:
1) \left|a-b+c\right|=∣a−b+c∣= ?
2) \left|a+b-c\right|=∣a+b−c∣= ?
3) \left|a-b-c\right|=∣a−b−c∣= ?
4) \left|-a+b+c\right|=∣−a+b+c∣= ?
cho\(5\left(a+b\right)=6\left(a+c\right)=4\left(b+c\right)\) CMR\(\frac{c-b}{c-a}=\frac{-2}{3}\)
Cho a,b,c thỏa mãn :
\(\dfrac{1}{a+b+c}=\dfrac{a+4b-c}{c}=\dfrac{b+4c-a}{a}=\dfrac{c+4a-b}{b}\)
Tính: \(P=\left(2+\dfrac{a}{b}\right)\left(3+\dfrac{b}{c}\right)\left(4+\dfrac{c}{a}\right)\)
Ai giải giúp mik với mik đag cần
Cho 3 số a,b,c đôi 1 khác nhau. CMR:
\(\dfrac{b-c}{\left(a-b\right).\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right).\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right).\left(c-b\right)}=\dfrac{2}{a-b}+\dfrac{2}{b-c}+\dfrac{2}{c-a}\)
Mn giúp em ạ!
TÍNH:
a, A = \(\dfrac{2}{3}+\dfrac{3}{4}.\left(\dfrac{-4}{9}\right)\)
b, B = \(2\dfrac{3}{11}.1\dfrac{1}{12}.\left(-2,2\right)\)
c, C = \(\left(\dfrac{3}{4}-0,2\right).\left(0,4-\dfrac{4}{5}\right)\)
Cho\(\frac{a}{b}\)=\(\frac{c}{d}\) chứng minh
1,\(\frac{a^2+c^2}{b^2+d^2}\)=\(\frac{a.c}{b.d}\)
2,\(\frac{a^2+c^2}{b^2+d^2}\)=\(\frac{a^2-c^2}{b^2-d^2}\)
\(3,\left(a+c\right).\left(b-d\right)=\left(a-c\right).\left(b+d\right)\)
\(4,\left(b+d\right).c=\left(c+c\right).d\)
\(5,\frac{4.a-12.b}{8.a+11.b}=\frac{4.c-12.d}{8.c+11.d}\)
\(6,\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
\(7,\frac{a^{10}+b^{10}}{\left(a+b\right)^{10}}=\frac{c^{10}+d^{10}}{\left(c+d\right)^{10}}\)
Cho a,b,c thỏa mãn: \(\frac{1}{a+b+c}=\frac{a+4b-c}{c}=\frac{b+4c-a}{a}=\frac{c+4a-b}{b}\)
Tính P = \(\left(2+\frac{a}{b}\right).\left(3+\frac{b}{c}\right).\left(4+\frac{c}{a}\right)\)
Cho 3 số a,b,c đôi một phân biệt. CMR:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)\\ \)
cho 3 số a,b,c phân biệt thỏa mãn :
\(\frac{\left(a-b\right)\left(a+b\right)}{b-c}=\frac{\left(b-c\right)\left(b+c\right)}{c-a}=\frac{\left(c-a\right)\left(c+a\right)}{a-b}=1\)
tính giá trị biểu thức : \(P=\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)\)
ai đung tui tích cho