Cho \(a^3+b^3+c^3=3abc\) và abc khác 0; a+b+c khác 0
Chứng minh rằng
P=\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
1) Cho a,b,c là ba số thực thỏa mãn: abc khác 0, a+b+c khác 0 và a3+b3+c3=3abc. Chứng minh
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
Cho \(a^3+b^3+c^3=3abc\)và \(abc\ne0;a+b+c=0\)
CMR \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=0\)
Cho a3+b3+c3 = 3abc và a +b +c khác 0
a) Tính giá trị biểu thức \(\frac{a^2+b^2+c^2}{_{\left(a+b+c\right)^2}}\)
b)Chứng minh : P=\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
Cho a,b,c>0 và abc=1. CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Cho a,b,c>0 và abc=1. Chứng minh: \(\frac{1}{a^3.\left(b+c\right)}+\frac{1}{b^3.\left(a+c\right)}+\frac{1}{c^3.\left(b+c\right)}\ge\frac{3}{2}\)
a) Cho a,b,c đều khác nhau đôi một và \(\frac{a+b}{c}=\frac{b+a}{a}=\frac{c+a}{b}\)
Tính giá trị của biểu thức P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
b) Cho abc khác 0 và đôi một khác nhau thỏa mãn a+b+c=0
Tính giá trị biểu thức \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-a}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
mọi người ơi giúp mình với.đừng thấy rồi lướt qua nha.mỗi người giúp mnhf 1 câu thôi không nhiều thì it giúp dc phần nào thì giúp mình nhé.mình cảm ơn trước ..
(1) Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
với a;b;c khác 0 và \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)cm M=3abc
(2)cho a;b;c là các số đôi một khác nhau.Rút gọn:
A=\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
B=\(\frac{1}{a\left(a-b\right)\left(a-c\right)}+\frac{1}{b\left(b-a\right)\left(b-c\right)}+\frac{1}{c\left(c-a\right)\left(c-b\right)}\)
C=\(\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
D=\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
cho a,b,c>0 CMR
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right)\ge\frac{9}{1+abc}\)