\(3A=3^2+3^3+3^4+...+3^{2010}\)
\(3A-A=\left(3^2+3^3+3^4+..+3^{2010}\right)-\left(3+3^2+3^3+....+3^{2009}\right)\)
\(2A=3^{2010}-3\)(1)
(1) => \(3^{2010}-3+3=3^{2010}\)
=> n = 2010
Đúng 0
Bình luận (0)
A = 3 + 32 + 33 + ... + 32009
3A = 32 + 33 + 34 + ... + 32010
3A - A = (32 + 33 + 34 + ... + 32010) - (3 + 32 + 33 + ... + 32009)
2A = 32010 - 3
3n = 2A + 3
3n = 22010 - 3 + 3
3n = 32010
n = 2010
Đúng 0
Bình luận (0)