\(A=3+3^2+3^3+...+3^{2006}\)
\(\Leftrightarrow3A=3\left(3+3^2+3^3+....+3^{2006}\right)\)
\(\Leftrightarrow3A=3^2+3^3+3^4+....+3^{2007}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2007}\right)-\left(3+3^2+3^3+...+3^{2006}\right)\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
Ta có \(2A=3^{2007}-3\)
=> 2A+3=\(3^{2007}-3+3=3^{2007}\)
=> x=2007
A=3^1+3^2+3^3+....+3^2006
3A=3^2+3^3+...+3^2007
=>2A=3^2007-3
=>2A+3=3^x
3^2007-3+3=3^x
3^2007=3^x
=>x=2007
Vậy x=2007