Có a3-3ab2=10=>(a3-3ab2)2=100(1)
Có b3-3a2b=5=>(b3-3a2b)2=25(2)
Cộng (1) và (2)
=>(a3-3ab2)2+(b3-3a2b)2=100+25
<=>a6-6a4b2+9a2b4+b6-6a2b4+9a2b4=125
<=>a6+3a2b4+3a4b2+b6=125
<=>(a2+b2)3=125
<=>a2+b2=5
vậy a2+b2=5
Có a3-3ab2=10=>(a3-3ab2)2=100(1)
Có b3-3a2b=5=>(b3-3a2b)2=25(2)
Cộng (1) và (2)
=>(a3-3ab2)2+(b3-3a2b)2=100+25
<=>a6-6a4b2+9a2b4+b6-6a2b4+9a2b4=125
<=>a6+3a2b4+3a4b2+b6=125
<=>(a2+b2)3=125
<=>a2+b2=5
vậy a2+b2=5
cho a;b thỏa mãn a^3 -3ab^2 =19 va b^3-3a^2b=98
tinh a^2+b^2
cho a , b thỏa mãn : \(a^3-3ab^2=10\) và . \(b^3-3a^2b=5\) Tính \(P=a^2+b^2\)
cho \(a^3+3ab^2=2006\)
\(b^3+3a^2b=2005\)
tính \(a^2-b^2\)
1/ Cho tỉ lệ thức : a/b=c/d. Chứng minh:( 2a^2-3ab+5b^2)/(2b^2+3ab)=(2c^2-3cd+5d^2)/(2d^2+3cd)
2/ B=35+335+3335+...+333...35
3/ a^2+b^2+c^2>(ab+bc+ca)
4/ 18/a+b+c<=2/a+2/b+2/c với a,b,c dương
Cho \(a^3-3ab^2=19\) và \(b^3-3a^2b=18\). Tính \(P=a^2+b^2\)
Tính giá trị biểu thức :
Biết a,b thỏa : \(\hept{\begin{cases}a^3-3ab^2=233\\b^3-3a^2b=2010\end{cases}}\)Tính \(a^2+b^2\)
Cho \(a^3-3ab^2=19\) và \(b^3-3a^2b=98\) Hãy tính \(E=a^2+b^2\)
cho a^3 -3ab^2 =5 và B^3 - 3a^3b =10 tính a^2 + b^2
cm BĐT :
a2+5b2-(3a+b)\(\ge\)3ab-5
Cho \(a^2+3ab^2=2014\) và \(b^2+3a^2b=2013\). Tính \(P=a^2-b^2\)