Cho A = \(2\left(1^{2015}+2^{2015}+3^{2015}+...+n^{2015}\right)\). Biết n là số nguyên dương.
Chứng minh: A chia hết cho n(n+1)
Cho A=\(2\left(1^{2015}+2^{2015}+...+n^{2015}\right)\)và n là số nguyên dương. Chứng minh A chia hết cho n(n+1)
CMR với mọi số nguyên n thì A=n^2+n+2015 không chia hết cho 3
Cho dãy số \(\left\{U_n\right\}\) được xác định như sau: \(U_1=\dfrac{1}{3},U_n=\dfrac{\left(n^2-1\right)U_{n-1}}{n\left(n+2\right)}\) (Với \(n=2;3;4...\)). Tính gần đúng giá trị của biểu thức \(A=U_1+U_2+U_3+...+U_{2015}\).
Cho 3 số dương x , y , z thỏa mãn điều kiện :
\(xy+yz+zx=2015\) và :
\(P=x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}+y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}+z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}}\)
Chứng minh rằng P không phải là số chính phương .
1)giải phương trình \(\sqrt{3\left(1-x\right)}-\sqrt{3+x}=2\)
2)tìm số tự nhiên n lớn nhất sao cho 2015 viết dưới dạng 2015=\(a_1+a_2+...+a_n\)với \(a_1;a_2;...;a_n\)là hợp số
3)tìm số dư phép chia \(2012^{2013}+2015^{2014}\)cho11
chỉ cần trả lời câu b thôi nha
Cho các số nguyên dương : a1;a2;a3;....a2015 sao cho :
N = a1 + a2 + a3 +.....+ a2015 chia hết cho 30
Chứng minh : M= a15 + a25 + a35 + ..... + a20155 chia hết cho 30
Cho x,y >0 và x+y=2015
a, Tìm max của: M= \(\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}\)
b, Tìm min của: N= \(\left(1+\frac{2015}{x}\right)^2+\left(1+\frac{2015}{y}\right)^2\)
Cho A=1*2*3*...*2015*2016*(1+1/2+1/3+...+1/2015+1/2016)
Chứng tỏ rằng A là số tự nhiên chia hết cho 2017