\(\frac{a+b}{a-b}=\frac{c+a}{c-d}\)CMR a2=b.c
cho a,b,c khác 0.
\(và\frac{a.b}{a+b}=\frac{c.a}{c+a}=\frac{b.c}{b+c}\)
cmr a=b=c
Biết \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) CMR: \(a^2=b.c\)
Cho \(a^2\)= b.c CMR\(\frac{a^2+c^2}{a^2+b^2}\)= \(\frac{c^2}{b^2}\)
CMR nếu a2 = b.c thì
a,\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) b,\(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
Cmr \(\frac{a+b}{a-b}\)=\(\frac{c+a}{c-a}\)thì a2 = b.c
Cho \(a^2=b.c\) (với \(a\ne b;a\ne c\))
CMR;\(\frac{a+b}{b-c}=\frac{c+c}{c-a}\)
Cho \(\frac{a+b}{a+c}\)= \(\frac{a-b}{a-c}\)và a # c và a # -c ; a.c # 0
Tính A = \(\frac{10.b^2+9.b.c+c^2}{2.b^2+b.c+2.c^2}\)
tìm x,y
\(\frac{x}{3}\)= \(\frac{y}{4}\)và x.y = 12
2.cho \(\frac{a}{b}\)= \(\frac{c}{d}\).CMR
\(\frac{a^2+b^2}{c^2+d^2}\)= \(\frac{ab}{cd}\)
3.Cho \(\frac{a+b}{a-b}\)= \(\frac{c+d}{c-d}\) . CMR
\(^{a^2}\)= b.c