Từ: \(b^2=2c^2-2013\Rightarrow2c^2-b^2=2013\)
Đặt: \(P=5a^2-7b^2-c^2=5\cdot\left(b^2+c^2\right)-7b^2-c^2=4c^2-2b^2=2\cdot\left(2c^2-b^2\right)=2\cdot2013=4026\)
đpcm.
+ \(a^2=b^2+c^2\Rightarrow5a^2=5b^2+5c^{2.}\) (1)
+ \(b^2=2c^2-2013\Rightarrow7b^2=14c^2-7.2013\Rightarrow7b^2+c^2=15c^2-7.2013\) (2)
+ \(b^2=2c^2-2013\Rightarrow b^2-2c^2=-2013\) (2)
Trừ hai vế của (1) cho hai vế của (2)
\(5a^2-7b^2-c^2=5b^2+5c^2-15c^2+7.2013=5b^2-10c^2+7.2013=\)
\(=5\left(b^2-2c^2\right)+7.2013\) (4)
Thay (3) vào (4)
\(5a^2-7b^2-c^2=5.\left(-2013\right)+7.2013=2.2013=4026\)