Ta có a2 + b2 + c2 = (a + b + c)2
<=> ab + bc + ca = 0
<=> \(\hept{\begin{cases}ab=-bc-ca\\bc=-ac-ab\\ca=-ab-bc\end{cases}}\)
Khi đó a2 + 2bc = a2 + bc + bc = a2 + bc - ac - ab = (a - b)(a - c)
Tương tư b2 + 2ac = (b - a)(b - c)
c2 + ab = (c - a)(c - b)
Khi đó \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{-a^2\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{-b^2\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{-c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{-a^2b+a^2c-b^2c+b^2a-c^2a+c^2b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)(đpcm)