Ta có: \(a^2+b^2+c^2=1\)
⇒ \(\left\{{}\begin{matrix}\left|a\right|\text{≤}1\\\left|b\right|\text{≤}1\\\left|c\right|\text{≤}1\end{matrix}\right.\)
Mặt khác:
\(a^2+b^2+c^2=a^3+b^3+c^3=1\)
⇒ \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Vì \(\left\{{}\begin{matrix}1-a\text{≥}0\\1-b\text{≥}0\\1-c\text{≥}0\end{matrix}\right.\)
⇒ \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\text{≥}0\)
Dấu "=" ⇔ 1 số bằng 1 và 2 số còn lại bằng 0
⇒ \(S=1\)