Cho các số thực a, b, c đôi một khác nhau thỏa mãn ab + bc + ca = 1. Tính giá trị của biểu thức:\(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{^{\left[ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\right]^2}}\)
Cho các số nguyên a, b, c thoả mãn ab+bc+ca=1. Tính giá trị của biểu thức M= \(\frac{a\left(1+b^2\right)\left(1+c^2\right)}{\left(1+a^2\right)\left(b+c\right)}\)+\(\frac{b\left(1+c^2\right)\left(1+a^2\right)}{\left(1+b^2\right)\left(c+a\right)}\)+\(\frac{c\left(1+a^2\right)\left(1+b^2\right)}{\left(1+c^2\right)\left(a+b\right)}\)
Cho a,b,c thỏa mãn:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)
Tính giá trị của biểu thức:
\(M=\left(a-b+1\right)^{2018}+\left(b-c+1\right)^{2019}+\left(c-a+1\right)^{2020}\)
Cho a,b,c khác nhau đôi một và ab+bc+ca=1. Tính giá trị các biểu thức:
a) A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
b) B =\(\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
Cho a, b, c đôi một khác nhau, thỏa mãn: ab + bc+ ca = 1. Tính giá trị của biểu thức:
a) A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
b) B = \(\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
Cho a, b, c khác nhau thỏa mãn: ab + bc + ca = 1 . Tính giá trị của biểu thức:
a) A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
b) B = \(\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
cho a,b,c đôi một khác nhau thỏa mãn ab+bc+bc+ca=1
tính giá trị biểu thức M=\(\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a^2\right)}\)
Cho a,b,c đôi một khác nhau, hỏa mãn ab+ac+bc=1. Tính giá trị biểu thức:
A= \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
B= \(\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ba-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
tính giá trị của biểu thức.
Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)Cho ba số a, b, c khác 0 thỏa nãm đẳng thức :Tính: \(P=\frac{\left(a+b\right).\left(b+c\right).\left(a+c\right)}{abc}\)
Cho a; b; c là các số thỏa mãn: ab + bc + ca = 1
Tính giá trị biểu thức: T = \(\dfrac{\left(a+b+c-abc\right)^2}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)