Giải:
A=2/3.7+2/7.11+2/11.15+...+2/n.(n+4)
A=1/2.(4/3.7+4/7.11+4/11.15+...+4/n.(n+4)
A=1/2.(1/3-1/7+1/7-1/11+1/11-1/15+...+1/n-1/n+4)
A=1/2.(1/3-1/n+4)
A=1/6-1/2.(n+4)
⇒A<1/6
Chúc bạn học tốt!
Ta có : \(A=\dfrac{2}{3.7}+\dfrac{2}{7.11}+...+\dfrac{2}{n\left(n+4\right)}\)
\(\Rightarrow4A=\dfrac{8}{3.7}+\dfrac{8}{7.11}+...+\dfrac{8}{n\left(n+4\right)}\)
\(\Rightarrow4A=\dfrac{8}{3.7}+\dfrac{8}{7.11}+...+\dfrac{8}{n\left(n+4\right)}\)\(=\dfrac{2}{3}-\dfrac{2}{7}+\dfrac{2}{7}-\dfrac{2}{11}+...+\dfrac{2}{n}-\dfrac{2}{n+4}=\dfrac{2}{3}-\dfrac{2}{n+4}\)
\(\Rightarrow A=\dfrac{1}{6}-\dfrac{1}{2\left(n+4\right)}\)
- Xét hiệu \(A-\dfrac{1}{6}=-\dfrac{1}{2\left(n+4\right)}< 0\)
Vậy A < 1/6