A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ... + ( 2^19 + 2^20 )
A = 2( 1 + 2 ) + 2^3( 1 + 2 ) + ... + 2^19( 1 + 2 )
A = 3( 2 + 2^3 + ... + 2^19 )
=> A chia hết cho 3
A = 2+22+23+...+220 chia hết cho 3
A= (2+22)+(23+24)+...+(219+220)
A= 2(1+2)+23(1+2)+...+219(1+2)
A= 2.3+23.3+...+219.3
A= 3(2+23+...+219) chia hết cho 3
Vậy A chia hết cho 3
\(A=2+2^2+....+2^{20}.\)
\(A=\left(2+2^2\right)+....+\left(2^{19}+2^{20}\right)\)
\(A=2.\left(1+2\right)+....+2^{19}.\left(1+2\right)\)
\(A=2.3+....+2^{19}.3\)
\(A=3.\left(2+...+2^{19}\right)\)
\(\Rightarrow A⋮3\left(đpcm\right)\)