Lời giải:
Đặt $\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k$
$\Rightarrow a=2014k; b=2015k; c=2016k$
$\Rightarrow 4(a-b)(b-c)=4(2014k-2015k)(2015k-2016k)$
$=4(-k)(-k)=4k^2(1)$
Và:
$(c-a)^2=(2016k-2014k)^2=(2k)^2=4k^2(2)$
Từ $(1); (2)\Rightarrow 4(a-b)(b-c)=(c-a)^2$ (đpcm)
Đúng 0
Bình luận (0)