cho a,b,c ,x,y,z là các số dương thỏa \(x+y+x=a;x^2+y^2+z^2=b;a^2=b+4010\)
tính \(M=\sqrt[x]{\frac{\left(2005+y^2\right)\left(2005+z^2\right)}{2005+x^2}}+\sqrt[y]{\frac{\left(2005+x^2\right)\left(2005+z^2\right)}{2005+y^2}}\)
\(+\sqrt[z]{\frac{\left(2005+x^2\right)\left(2005+y^2\right)}{2005+z^2}}\)
giải giup mik vs
chp a,b,c,x,y,z là các số nguyên dương thỏa \(x+y+z=a\) ;\(x^2+y^2+z^2=b\);\(a^2=b+4010\)
tính \(M=\sqrt[x]{\frac{\left(2005+y^2\right)\left(2005+z^2\right)}{\left(2005+x^2\right)}}+\sqrt[y]{\frac{\left(2005+x^2\right)\left(2005+z^2\right)}{2005+y^2}}\)\(+\sqrt[z]{\frac{\left(2005+x^2\right)\left(2005+y^2\right)}{2005+z^2}}\)
Cho x,y là các số thực dương thỏa mãn điều kiện:\(x+y\le1\).Tìm giá trị nhỏ nhất của biểu thức \(K=4\cdot x\cdot y+\frac{1}{x^2+y^2}+\frac{2}{x\cdot y}\)
Cho: \(\left(x+\sqrt{x^2+\sqrt{2005}}\right)\left(y+\sqrt{y^2+\sqrt{2005}}\right)=\sqrt{2005}\)
1) Chứng minh: \(y+\sqrt{y^2+\sqrt{2005}}=-\left(x-\sqrt{x^2+\sqrt{2005}}\right)\)
2) Tính S = x + y
Làm đầy đủ và chi tiết nhé mọi người
Cho x>0 y>0 và \(x+y\le1\) tìm GTNN của bt
\(Q=x^2+y^2+\frac{1}{x^2}+\frac{1}{\cdot y^2}\)
Cho \(0\le x;y\le1\). Chứng minh: \(\frac{x+y}{2}\le\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\le1\)
Tính GTBT :A = \(\sqrt{1+\frac{2}{3}}\cdot\sqrt{1+\frac{2}{4}}\cdot...\cdot\sqrt{1+\frac{1}{2005}}\cdot\sqrt{1+\frac{2}{2006}}\)
cho \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{1+y^2}\right)=1\) Tính B biết B= \(x^{2005}+y^{2005}\)
a)Cho các số x,y,z \(\ge\)1.CMR: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\).
b) Cho x,y,z \(\ge\)0 và x\(\le1;y\le1;z\le1\)chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\le\frac{3}{1+xyz}\)
c)Cho a + b\(\ge\)2.CMR: \(a^3+b^3\le a^4+b^4\)
d)Cho a2+b2\(\ge\frac{1}{4}.CMR:a^4+b^4\ge\frac{1}{32}\)