Cho a1 / a2 = a2/a3 = a3/a4 = .......=an/a1 và a1+a2+a3+..+an khác 0
Tính: a1^2 + a2^2 + a3^2 + ..........+an^2 / (a1+a2+a3+..+an)^2
Chứng minh rằng nếu a1/a2=a2/a3=a3/a4=...=an/an+1 thì (a1+a2+a3+...+an/a2+a3+a4+...+an+1)^n=a1/an+1
CMR nếu \(\dfrac{a1}{a2}=\dfrac{a2}{a3}=\dfrac{a3}{a4}=...=\dfrac{an}{an+1}\) thì:
\(\left(\dfrac{a1+a2+a3+...+an}{a2+a3+a4+...+an+1}\right)^n=\dfrac{a1}{an+1}\)
cho a1/a2=a2/a3=a3/a4=...=an/an+1 thì (a1+a2+a3+...+an/a2+a3+a4+...+an+1)^n=a1/an+1
hộ mk giúp nha nhanh lên mk cần gấp lắm
Cho : a1/a2 = a2/a3 = ....= a(n-1)/an = a(n)/a1 và a1 + a2 + .... +a(n) khác 0 ; a1 = -2
Tính a2 ; a3 ; a4 ; .... ; a(n) bằng bao nhiêu ?
Tìm số tự nhiên n nhỏ nhất để tồn tại dãy số nguyên a1,a2,a3,a4,a5,a6,a7,...,a thỏa mãn a1+a2+a3+...+an=2017=a1*a2*a3*...*an
1) Cho a^2+b^2/c^2+d^2=a.b/c.d với a,b,c,d khác 0 . Hãy Chứng Minh rằng a/b=c/d hoặc a/b=d/c
2) Tính tổng : A = c/a1.a2 + c/a2.a3 + .......+c/an-1.an Và a2 -a1=a3-a2=....=an-an-1 =k ( a1 là số hạng đầu tiêng , an là số hạng thứ n)
cho day so a1,a2,a3,.....Biet a2=3,a2012=2013,an=an+an+1.tinh
S=a1+a2+a3+.......+a2010
chứng minh rằng nếu \(\frac{a1}{a2}=\frac{a2}{a3}=...=\frac{an}{an+1}\)thì
(\(\frac{a1}{a2}=\frac{a2}{a3}=...=\frac{an}{an+1}\))^n=\(\frac{a1}{an+1}\)