A=3+32+33+34+...+325A=3+32+33+34+...+325
→A=(3+32+33+34+35)+(36+37+38+39+310)+...+(321+322+323+324+325)→A=(3+32+33+34+35)+(36+37+38+39+310)+...+(321+322+323+324+325)
→A=3(1+3+32+33+34)+36(1+3+32+33+34)+...+321(1+3+32+33+34)→A=3(1+3+32+33+34)+36(1+3+32+33+34)+...+321(1+3+32+33+34)
→A=(1+3+32+33+34)(3+36+...+321)→A=(1+3+32+33+34)(3+36+...+321)
→A=40(3+36+...+321)→A=40(3+36+...+321)
→A⋮40
A = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + .... + 332 + 333 + 334 + 335
= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + .... + (332 + 333 + 334 + 335)
= (1 + 3 + 32 + 33) + 34.(1 + 3 + 32 + 33) +.... + 332.(1 + 3 + 32 + 33)
= 40 + 34.40 + ... + 332.40
= 40.(1 + 34 + .... + 332) \(⋮\)40
=> A chia 4 dư 0