Hoàng Huy
\(A=1+3^2+3^3+....+3^{2000}\)
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.....+\left(3^{1998}+3^{1999}+3^{2000}\right)\)
\(A=\left(1+3+3^2\right)+3^3\times\left(1+3+3^2\right)+....+3^{1998}\times\left(1+3+3^2\right)\)
\(A=13+3^3\times13+3^{1998}\times13\)
\(A=13\times\left(1+3^3+....+3^{1998}\right)⋮13\)
A = 1 + 3 + 32 + 33 + 34 + 35 + ... + 31998 + 31999 + 32000
= ( 1 + 3 + 32 ) + 33.(1 + 3 + 32) +....+ 31998.(1 + 3 + 32)
= 13 + 33.13 +... +31998.13
= 13. ( 1+ 33 + ... + 31998 )
vì 13 chia hết cho 13 nên 13. ( 1+ 33 + ... + 31998 ) chia hết cho 13
vậy A chia hết cho 13 (đcpcm)
y\(^{27867868769879789879789876978\sqrt{8798798787}^{257678697869786}78987}\)
Bạn làm hay qué HiHi