\(2A=2\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(A=\frac{1}{2}-\frac{1}{2^{100}}\)
Đến đây tôi chịu
\(A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=A=\frac{1}{2}-\frac{1}{2^{100}}\)
\(A+\frac{1}{2^{100}}=\frac{1}{2}-\frac{1}{2^{100}}+\frac{1}{2^{100}}=\frac{1}{2}\)
Vậy \(A+\frac{1}{2^{100}}=\frac{1}{2}\)