A = 1 + 2 + 22 + 23 + ... + 22019
2A = 2(1 + 2 + 22 + ... + 22019)
2A = 2 + 22 + 23 + ... + 22020
=> 2A - A = (2 + 22 + 23 + ... + 22020) - (1 + 2 + 22 + .. +22019)
=> A = 22020 - 1
B - A = 22020 - (22020 - 1) = 1
\(A=1+2+2^2+2^3+...+2^{2019}\)
\(2A=2\left(1+2+2^2+2^3+...+2^{2019}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2020}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2020}\right)-\left(1+2+2^2+2^3+...+2^{2019}\right)\)
\(A=2^{2020}-1\)
=> B - A = \(2^{2020}-\left(2^{2020}-1\right)=\text{ấn máy tính đel ra :))))}\)
#)Giải :
\(A=1+2+2^2+2^3+...+2^{2019}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2020}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2020}\right)-\left(1+2+2^2+2^3+...+2^{2019}\right)\)
\(\Rightarrow A=2^{2020}-1\)
\(\Rightarrow B-A=2^{2020}-\left(2^{2020}-1\right)\)
\(\Rightarrow B-A=2^{2020}-2^{2020}+1\)
\(\Rightarrow B-A=1\)
Vậy B - A = 1
\(A=1+2+2^2+2^3+...+2^{2019}\)
\(2A=2+2^2+2^3+2^4+...+2^{2020}\)
\(2A-A=\left(2+2^2+...+2^{2020}\right)-\left(1+2+...+2^{2019}\right)\)
\(A=2^{2020}-1\)
\(\Rightarrow B-A=2^{2020}-\left(2^{2020}-1\right)\)
\(B-A=2^{2020}-2^{2020}+1\)
\(B-A=1\)
Vậy ....
\(A=1+2+2^2+2^3+...+2^{2019}\)
\(2A=2+2^2+2^3+3^4+...+2^{2020}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2020}\right)-\left(1+2+2^2+2^3+...+2^{2019}\right)\)
\(A=2^{2020}-1\)
\(B=2^{2020}\)
\(B-A=2^{2020}-\left(2^{2020}-1\right)\Leftrightarrow2^{2020}-2^{2020}+1=0+1=1\)
Chúc bạn học tốt !!!