A\(=\frac{1}{1.\left(2m-1\right)}+\frac{1}{3\left(2n-3\right)}+...+\frac{1}{\left(2n-3\right)3}+\frac{1}{\left(2n-1\right)1}\)
B\(=1+\frac{1}{3}+...+\frac{1}{2n-1}\)
tính A:B
Cho:
\(A=\dfrac{1}{1.\left(2n-1\right)}+\dfrac{1}{3.\left(2n-3\right)}+...+\dfrac{1}{\left(2n-3\right).3}+\dfrac{1}{\left(2n-1\right).1}\) \(B=1+\dfrac{1}{3}+...+\dfrac{1}{2n-1}\) (với n ∈ N*).
Tính \(\dfrac{A}{B}\)
Tìm số nguyên n sao cho
a) (2n^3 + n^2 + 7n + 1) chia hết cho 2n-1
b)(n^3 - 2) chia hết cho n-2
c)(n^3 - 3n^2 - 3n -1) chia hết cho n^2 + n + 1
d)((n^4 - 2n^3 = 2n^2 - 2n + 1) chia hết cho n^4 - 1
e)(n^3 - n^2 + 2n + 7) chia hết cho n^2 + 1
rút gọn biểu thức a/b=(1/1*(2n-1)+1/3*(2n-3)+....+1/(2n-3)*3+1/(2n-1)*1)/1+1/3+1/5+...+1/2n-1
Mong các bạn giúp mình
Tìm stn n sao cho :
a, (a^4-2n^3+2n^2-2n+1) chi hết cho (n^4-1)
b, (n^3-n^2+2n+7) chia hết cho (n^2+1)
Cho a+b+c = 6 và (a-1)^3 + (b-1)^3 + (c-1)^3 = 0
Tính : T = (a-3)^2n+1 + (b-3)^2n+1 + (c-3)^2n+1 với n là số tự nhiên
Cho a,b,c thoa man a+b+c=6 va ( a-1)^3 +(b-2)^3 +(c-3)^3 =0. Tinh T = (a-1)^2n+1 + (b-2)^2n+1 + (c-3)^2n+1
\(\frac{A}{B}=\frac{\frac{1}{1\left(2n-1\right)}+\frac{1}{3\left(2n-3\right)}+\frac{1}{5\left(2n-5\right)}+.....+\frac{1}{\left(2n-3\right)3}+\frac{1}{\left(2n-1\right)1}}{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{2n-1}}\)
Rút gọn biểu thúc
\(\frac{A}{B}=\frac{\frac{1}{1\left(2n-1\right)}+\frac{1}{3\left(2n-3\right)}+\frac{1}{5\left(2n-5\right)}+...+\frac{1}{\left(2n-3\right).3}+\frac{1}{\left(2n-1\right).1}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2n-1}}\)