Cho A=1/1.2+1/3.4+1/5.6+...+1/2015.2016 và B=1/1008+2/1009+1/1010+...+1/2016. Tính B-A
CMR 1/1.2+1/3.4+1/5.6+...+1/2015.2016=1/1009+1/1010+...+1/2016
chứng minh 1/1.2+1/3.4+1/5.6+...+1/2015.2016=1/1009+1/1010+...+1/2016
CMR: 1/1.2+1/3.4+1/5.6+1/7.8+...+1/2013.2014=1/1008+1/1009+1/1010+...+1/2013+1/2014
Chứng minh rằng
1/1.2 + 1/3.4 + 1/5.6 + 1/7.8 + ... + 1/2013.2014 = 1/1008 + 1/1009 + 1/1010 +...+ 1/2013+ 1/2014
cho A=\(\frac{1}{1.2}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{2005.2006}\)và B=\(\frac{1}{1008}\)+\(\frac{1}{1009}\)+...+\(\frac{1}{2016}\). Tính B-A
CMR :1/1.2+1/3.4+...+1/2013.2014=1/1008+1/1009 +........+1/2013+1/2014
Câu 1 : Tính
A= 1/2 + 1/3 + 1/4 +...+1/300
B= 2999/1 + 2998/2 + 2997/3 +...+1/2999
Tính \(\frac{A}{B}\)
Câu 2
C= (1+2012/1)(1+2012/2)....(1+2012/1000)
D=(1+1000/1)(1+1000/2)(1+1000/3)...(1+1000/2012)
Tính \(\frac{C}{D}\)
Câu 3
Cho E=1/1.2 + 1/3.4 + 1/5.6 +...+1/2013/2014
F=1/1008/2014 + 1009/2013 +.....+1/2014.1008
Tính \(\frac{E}{F}\)
1. Chứng Minh Rằng \(\frac{1}{3^1}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+.....+\frac{100}{3^{100}}<\frac{3}{4}\)
2. Chứng Minh Rằng \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2012}\)