Tính C=(1/1.2+1/3.4+1/5.6+...+1/2017.2018)-(1/1010+1/1011+1/1012+...+1/2017)
cho \(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{2017.2018}\) ; \(b=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2018}\) . Tính (a-b)^2019
cho A=1/1.2+1/3.4+1/5.6+....+1/2021.2022 và B=1011+1010/1012+1009/1013+1008/1014+...+2/2020+1/2021 Chứng minh rằng : B/A là số nguyên
\(\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.....+\frac{1}{2017.2018}\right)-\left(\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+.....+\frac{1}{2017}\right)\)
tính hợp lí:
\(\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2017.2018}\right)-\left(\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}\right)\)
A=1/1011.(1+1/3+1/5+...+1/2019) và B=1/1010.(1/2+1/4+1/6+...+1/2020) So sánh A và B
cho A= 1011(1 +1/3+1/5+....+1/2019) và B = 1010(1/2+1/4+1/6+...+1/2020)
so sanh A và B
Cho A=\(\frac{1}{1011}\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)\)và B=\(\frac{1}{1010}\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)So sánh A và B
cho A= 1-1/2+1/3-1/4+.....-1/2018+1/2019 và B=1/1010+1/1011+...+1/2018+1/2019
Tính (A+B) mũ 2020