A = (x^4-2x^2+1)+(3x^2-6x+3)+5
= (x^2-1)^2+3.(x-1)^2+5 >= 5
Dấu "=" xảy ra <=> x^2-1=0 và x-1=0 <=> x=1
Vậy Min A = 5 <=> x=1
k mk nha
A=\(x^4+x^2-6x+9\)
\(=\left(x^4-2x^2+1\right)\left(3x^2-6x+3\right)+5\)
\(=\left[\left(x^2\right)^2-2x^2.1+1^2\right]+3.\left(x^2-2x+1\right)+5\)
\(=\left(x^2-1\right)^2+3.\left(x-1\right)^2+5\ge5\)
Min A=5 khi \(\hept{\begin{cases}x^2-1=0\\x-1=0\end{cases}}\)=> x = 1