Cho a, b là các số nguyên thỏa mãn :(3a+5b).(a+4b) chia hết cho 7 . Chứng minh rằng tích đó chia hết cho 49
Chứng minh rằng nếu a;b là các số nguyên thì 2a+3b khi và chỉ khi 9a+5b chia hết cho 17
cho các số tự nhiên a và b Chứng minh rằng
a) neu a2+b2chia hết cho 3 thì a và b chia hết cho 3
b) nếu a2+b2chia hết cho 7 thì a và b chia hết cho 7
chứng minh rằng : 2a -5b + 6c chia hết cho 7 nếu a-11b+3c chia hết cho 17 ( a, b , c thuộc Z )
cho a,b,c là các số nguyên và a^3+b^3+c^3 chia hết cho 7 chứng minh abc chia hết cho 7
a)Cho số nguyên dương > 1 theo thứ tự tăng dần a1, a2, a3, ..., an, trong đó các số này ko chia hết cho 2 và 3. Chứng minh rằng an > 3n
b)Đa thức f(x) = ax2 + bx + c có a, b, c là các số nguyên, và \(a\ne0\). Biết với mọi giá trị nguyên của x thì f(x) chia hết cho 7. Chứng minh rằng a, b, c đều chia hết cho7
chứng ming rằng cới mọi số nguyên a thì:
a, a^3 - a chia hết cho 3
b, a^7 - a chia hết cho 7
bài 2:chứng minh rằng: A=1^3+2^3+3^3+...+100^3chia hết cho B= 1+2+...+100
chứng tỏ rằng :
a) nếu 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 . Chứng minh tổng quát .
b) nếu 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Chứng minh rằng:
a/ Nếu p và q là 2 số nguyên tố lớn hơn 3 thì p2 - q2 chia hết cho 24.
b/ Nếu a, a+k, a + 2k ( a, k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết cho 6.