Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lê trang linh

Cho A= n^3+ 3n^2 + 2n

a) chứng minh rằng A chia hết cho 3 với mọi n nguyên

b) tìm giá trị nguyên dương của n với n<10 để A chia hết cho 15

Đinh Thùy Linh
9 tháng 6 2016 lúc 13:32

a) \(A=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Với mọi n nguyên thì A là tích của 3 số nguyên liên liếp nên A chia hết cho 3. ĐPCM

b) A chia hết cho 3 với mọi n nguyên. Vì vậy, để A chia hết cho 15 thì A sẽ chia hết cho 5.

Các giá trị nguyên dương nhỏ hơn 10 của n là: 3;4;5;8;9

soyeon_Tiểu bàng giải
9 tháng 6 2016 lúc 13:46

a) A = n3 +3n2 + 2n

A = n3 + n2 + 2n2 + 2n

A = n2.( n+1) + 2n.(n+1)

A = (n+1).(n2+2n)

A = (n+1).n.(n+2)

A = n.(n+1).(n+2)

Vì n.(n+1).(n+2) là tích 3  số nguyên liên tiếp nên n.(n+1).(n+2) chia hết cho 3

=> A chia hết cho 3

Chứng tỏ A chia hết cho 3 với mọi n nguyên

b) Ta có: 15 = 3.5

Mà (3,5)=1, A chia hết cho 3 nên ta phải tìm n nguyên dương để A chia hết cho 5

Do A = n.(n+1).(n+2) nên để A chia hết cho 5 thì trong 3 số n;n+1;n+2 có 1 số chia hết cho 5

Mặt khác n<10 nên n<n+1<n+2<12

Ta có các nhóm số thỏa mãn là: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11

Vậy các giá trị của n tìm được là: 3;4;5;8;9

Yuko Girl
8 tháng 10 2017 lúc 16:54

chứng minh rằng:  n.(n+8).(n+13) chia hết cho 3


Các câu hỏi tương tự
Lê phan joly
Xem chi tiết
Trần Lê Mai Hoa
Xem chi tiết
Cô nàng Song Ngư
Xem chi tiết
Legend Xerneas
Xem chi tiết
Nhuyễn Hồng Nhung
Xem chi tiết
Nguyễn Minh Hiển
Xem chi tiết
le mai ly
Xem chi tiết
bui huyen
Xem chi tiết
duong thuy Tram
Xem chi tiết