Cho ba số thực dương a , b , c thỏa mãn \(a^2+b^2+c^2=3\); m , n là các số nguyên dương sao cho 2n \(\ge\) m. CMR:
\(m\left(a+b+c\right)+n\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge m\left(m+n\right)\)( ** ).
a) Cho các số a,b,c là các số hữu tỉ đôi một khác nhau CMR:
\(B=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\) Là bình phương của một số hữu tỷ
b) Cho các số a,b,c là các số thực dương CMR: \(\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\ge2\left(a+b+c\right)\)
c) Tìm tất cả các số nguyên dương n sao cho \(n^4+n^3+1\)là số chính phương
Cho a , b , c , n là các số dương
CMR \(a^{\left(n+1\right)\left(b+c\right)}+b^{\left(n+1\right)\left(a+c\right)}+c^{\left(n+1\right)\left(a+b\right)}\ge\frac{a^n+b^n+c^n}{2}\)
Với mỗi số nguyên dương n ,ta kí hiệu \(x_n=\frac{\left(n+1\right)\left(n+2\right)...\left(3n\right)}{3^n}\)
1.CMR các số nói trên đều là số nguyên
2.Cho \(A=x_1+x_2+...+x_{2012}\).Tìm 3 CSTC của A
Cho a;b;c là 2 số thực dương
CMR: \(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\)
1/ Cho mọi số nguyên dương .Chứng minh
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}<1\)
2/ Chứng minh bất dẳng thức sau với các số a, b, c dương.
\(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}\)
3/ Chứng minh
a) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}\) (với a, b, c dương)
b) \(\frac{a^2}{a+b}-\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\) (với a, b, c dương)
Kí hiệu [a] là phần nguyên của a
CMR: với mọi n nguyên dương ta luôn có
\(\left[\frac{3}{1.2}+\frac{7}{2.3}+...+\frac{n^2+n+1}{n\left(n+1\right)}\right]=n\)
C1: Giả sử x,y là những số thực dương phân biệt tm:
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR 5y=4x
C2: Giả sử a,b,c là các số thực dương tm a+b+c=abc
\(\frac{a}{1+a^2}+\frac{2b}{1+b^2}+\frac{3c}{1+c^2}=\frac{abc\left(5a+4b+3c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
C3: Cho a,b,c khác 0 tm \(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2=4abc\)
CMR : \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)với n là số tự nhiên lẻ
C4: Cho các số a,b,x,y tm : ab khác 0 ; a+b khác 0 ; \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\); \(x^2+y^2=1\)
CMR : a, \(ay^2=bx^2\)
b, \(\frac{x^{200}}{a^{100}}+\frac{y^{200}}{b^{100}}=\frac{2}{\left(a+b\right)^{100}}\)
Cho n số dương a1,a2 ,...,an. Chứng minh rằng :
\(\left(a_1+a_2+...+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2\)