Cho a là số nguyên tố ( a > 2 ) ; a + k ; a + 2k là các số nguyên tố. Chứng minh k chia hết cho 6
Cho a là số nguyên tố ( a > 2 ) ; a + k ; a + 2k là các số nguyên tố. Chứng minh k chia hết cho 6
Chứng minh rằng:
a/ Nếu p và q là 2 số nguyên tố lớn hơn 3 thì p2 - q2 chia hết cho 24.
b/ Nếu a, a+k, a + 2k ( a, k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết cho 6.
Chứng minh rằng nếu 3 số a, a+k, a+2k đều là các số nguyên tố lớn hơn 3 thì k chia hết cho 6.
cho a là số nguyên tố (a>2);a+k;a+2k là các số nguyên tố
c/m k chia hết cho 6
giúp giải khẩn cấp mng ơi:
1.cho stn n có 1995 ước số có 1 ước nguyên tố chẵn. chứng minh n là số chính phương, n chia hết 4
2. cho a là 1 hợp số, khi phân tích ra thừa số nguyên tố a chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2. biết a^3 có tất cả 40 ước số. a^2 có bn ước số
3.tìm số tự nhiên n > hoặc = 1 sao cho tổng 1!+2!+3!+...+n! là một số chính phương
4. tìm số tự nhiên n có 2 c.s biết 2n+1 và 3n+1 đều là scp
5. chứng minh:
a)p và q là 2 số nguyên tố lớn hơn 3 thì p^2-q^2chia hết cho 24
b)Nếu a;a+k;a+2k (a và k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết 6
6.a)Một số nguyên tố chia 43 dư r (r là hợp số).TÌm r
b)1 số nguyên tố chia 30 dư r. Tìm r biết r ko là hợp số
CMR: nếu 3 số a ; a+k ; a+2k đều là số nguyên tố > 3 thì k chia hết cho 6
Chứng minh rằng: Nếu ba số tự nhiên m, m+k, m+ 2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6.
nhanh t tk
Cho n và k là các số tự nhiên: \(A=n^4+4^{2k+1}\)
a) Tìm k, n để A là số nguyên tố.
b) CMR: Nếu n không chia hết cho 5 thì A chia hết cho 5.Với p là ước nguyên tố lể của A ta luôn có p-1 chia hết cho 4