mik chỉ ms gặp bài này thôi
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p-1)(p+1) chia hết cho 24?
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
Câu hỏi của Nguyen Huy Hoang - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
a là số nguyên tố lớn hơn 3 nên a không chia hết cho 2 (vì nếu a chia hết cho 2 thì là hợp số)
=> a-1 chia hết cho 2
=>(a-1)(a+4) chia hết cho 2
a nguyên tố lớn hơn 3 nên a không chia hết cho 3=> a chia 3 dư 1 hoặc a chia 3 dư 2
nếu a chia 3 dư 1 thì a-1 chia hết cho 3=> (a-1)(a+4) chia hết cho 3
nếu a chia 3 dư 2 thì a+4 chia hết cho 3=> (a-1)(a+4) chia hết cho 3
do đó (a-1)(a+4) chia hết cho 3
lại có 2 và 3 nguyên tố cùng nhau
nên ta có điều phải chứng minh
Cách lm của mk cũng vậy