cho |a| khác |b| và ab khác 0 thoả mãn \(\frac{a-b}{a^2+ab}\) +\(\frac{a+b}{a^2-ab}\)=\(\frac{3a-b}{a^2-b^2}\)
Tính B=\(\frac{a^3+2a^2b+3b^2}{2a^3+a^2b+b^3}\)
cho |a| ≠ |b| và ab ≠ 0 thoả mãn \(\frac{a-b}{a^2+ab}\)+\(\frac{a+b}{a^2-ab}\)=\(\frac{3a-b}{a^2-b^2}\)
Tính B=\(\frac{a^3+2a^2b+3b^2}{2a^3+a^2b+b^3}\)
Cho 2 số thực a,b thỏa mãn: lal khác lbl va ab khac 0 thoa man \(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\)
Tính P=\(\frac{a^3+2a^2b+2b^3}{2a^3+ab^2+2b^3}\)
cho |a| ≠ |b| và ab ≠ 0 thoả mãn \(\frac{a-b}{a^2+ab}\)+\(\frac{a+b}{a^2-ab}\)=\(\frac{3a-b}{a^2-b^2}\)
Tính B=\(\frac{a^3+2a^2+3b^2}{2a^3+a^2+b^3}\)
cho a,b,c khác 0 sao cho a^3b^3+b^3c^3+c^3a^3=2a^2b^2c^2 . Tính M=(1+a/b)(1+b/c)(1+c/a)
\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0
Tìm tích x*y, biết rằng x, y thỏa mãn các đẳng thức sau (a, b là hằng số): (2a^3-2b^3)x-3b=3a với a khác b và (6a+6b)y=(a-b)^2 với a khác -b.
Cho 2 số hữu tỉ a, b thỏa mãn đẳng thức a^3b + ab^3 + 2a^2b^2 + 2a + 2b + 1 = 0. Chứng minh rằng 1 - ab là bình phương của một số hữu tỉ
Cho 2 số thực a,b thoả mãn ab khác 0, a khác 1, b khác 1 và a+b=1 . Tính giá trị của biểu thức :\(P=\frac{a}{b^2-1}-\frac{b}{a^2-1}+\frac{2\left(a+b\right)}{a^2b^2+3}\)