CMR \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{4}{9},A>\frac{1}{4}\)
A= \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+....+\frac{2499}{2500}\)
A=\(1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+....+1-\frac{1}{2500}\)
A=\(\left(1+1+1+.....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)
A=\(49-\)\(\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)
do \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)>0 nên 49<0
bài trên iu cầu CMR A < 49 thì mk lm đúng chưa ạ. Đây là đề thi quận mk đó ạ
Cho \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{49^2}+\frac{1}{50^2}\). \(CMR:\)
a) \(A>\frac{1}{4}\)
b) \(A<\frac{4}{9}\)
Bài 1 : Tính
Cho A =\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+......+\frac{1}{60}>\frac{7}{12}\)
B = \(\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{5^2}+......+\frac{ }{50^{21}}\)
CMR B >\(\frac{1}{4}\)và B < \(\frac{4}{9}\)
C = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.......\frac{79}{80}< \frac{1}{9}\)
Bài 1 : Cho A = \(\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\) . CMR : A < 2
Bài 2 : Cho B = \(2^1+2^2+2^3+2^4+...+2^{30}\). CMR : B chia hết cho 21
Bài 1:CMR:\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}<2\)
Bài 2: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right)}=\frac{99}{101}\)
Bài 3:\(A=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.....\frac{2449}{2500}\)
Bài 4:CMR:\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\) CMR A < 2
AI ĐÚNG TK
A=\(\frac{1}{^{3^2}}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)
Chứng minh a,A>\(\frac{1}{4}\)
b,A<\(\frac{4}{9}\)