Cho A=\(\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+....+\frac{1}{101.400}\)
CMR:A=\(\frac{1}{299}.\left(1+\frac{1}{2}+.......+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+.....+\frac{1}{400}\right)\)
ở chỗ 1/299 là nhân với ngoặc vuông nha bạn nào giải hộ mình rthì i li-ke
1/ Tính bằng cách thuận tiện nhất:
\(A=\)\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+....+\frac{9899}{9900}\)
2/ Cho \(A=\)\(\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+....+\frac{1}{101.400}\)
Chứng minh rằng: \(A=\)\(\frac{1}{299}\).\(\left[\left(1+\frac{1}{2}+....+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+....+\frac{1}{400}\right)\right]\)
GIÚP MÌNH VS, MÌNH ĐANG CẦN GẤP.MÌNH SẼ TICK CHO AI NHANH NHẤT!!!!!
Tính \(A=\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}\)
Tính: \(\frac{\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}}{\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}}\)
\(\frac{\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+.............+\frac{1}{101.400}}{\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+.......+\frac{1}{299.400}}\)
Tính:
A=\(\frac{\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}}{\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}}\)
Giúp mình nha các bạn
cho \(A=\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+.....+\frac{1}{101.400}\)
\(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+....+\frac{1}{299.400}\)
so sánh A và B
Tính \(\frac{A}{B}\) biết rằng
A = \(\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}\)
B= \(\frac{1}{1.102}+\frac{1}{12.103}+\frac{1}{3.104}+...\frac{1}{299.400}\)
Tính bằng cách hợp lí:
a) A=\(\left(\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+....+\frac{1}{101.400}\right):\left(\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}\right)\)
b) B=\(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{200}\right):\left(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+....\frac{198}{2}+\frac{199}{1}\right)\)