Đặt A=1/12+1/22+1/32+1/42+....+1/502<1/1.2+1/2.3+1/3.4+....+1/49.50
A=1-1/50=50/50-1/50=49/50<2
A=49/50<2 hay 98/100<100/100
Vậy A<2
Ta có
A= 1/2 + 1/22 + 1/32 + 1/42 +.......+ 1/502
=1/2.2 + 1/3.3 + 1/4.4 +.......+ 1/50.50
<1/1.2 + 1/2.3 + 1/3.4 +.......+ 1/49.50
= 1 - 1/2 +1/2 - 1/3 + ...........+ 1/49 -1/ 50
= 1 - 1/50 = 49/50 <100/50=2
Vậy A <
Ta có : \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
...................
...................
\(\frac{1}{50^2}<\frac{1}{49.50}\)
Vậy \(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(\Rightarrow A<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A<1-\frac{1}{50}=\frac{49}{50}<2\)
hướng giả đúng rồi nhưng các b hơi nhầm
\(\frac{1}{50^2}<\frac{1}{50.51}\)
chứ mẫu k phải là 49.50