A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)
Ta thấy:
\(\frac{1}{10}>\frac{1}{100}\)
\(\frac{1}{11}>\frac{1}{100}\)
..................
\(\frac{1}{99}>\frac{1}{100}\)
\(\frac{1}{100}=\frac{1}{100}\)
Do đó, \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{90}{100}\)
\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{10}+\frac{90}{100}\)
\(A>\frac{100}{100}\)
A>1
Vậy A>1