a)
Đặt \(a=13x+7\) và \(b=13y+6\)\(\left(x,y\inℕ^∗\right)\)
Ta có;
\(a+b=13x+7+13y+6=13x+13y+13=13\left(x+y+1\right)\)
Do \(\left(x,y\inℕ^∗\right)\) nên \(x+y+1\inℕ^∗\), do đó \(a+b=13\cdot\left(x+y+1\right)⋮13\)
b)
\(a-b+25=\left(13x+7\right)-\left(13y+6\right)+25=13x-13y+26=13\left(x-y+2\right)\)
Vì \(a>b\) nên \(x>y\), do đó \(x-y+2\inℕ^∗\)
Suy ra \(a-b+25=13\cdot\left(x-y+2\right)⋮13\)
Chúc bạn học tốt!