nhân 2 vế cho (a+b+c) ta được:
a+b+c/a+b + a+b+c/b+c + a+b+c/c+a= a+b+c/90
1 + c/a+b + 1+ a/b+c + 1+ b/c+a=2007/90
c/a+b + a/b+c + b/c+a= 2007/90 - 3=? tự tính
vậy kết quả cần tìm là:
nhân 2 vế cho (a+b+c) ta được:
a+b+c/a+b + a+b+c/b+c + a+b+c/c+a= a+b+c/90
1 + c/a+b + 1+ a/b+c + 1+ b/c+a=2007/90
c/a+b + a/b+c + b/c+a= 2007/90 - 3=? tự tính
vậy kết quả cần tìm là:
Cho a +b+c=2007 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/90 Tính giá trị của S= a/(b+c) + b/ (c+a) + c /(a +b)
Cho a+b+c=2007 và 1/a+b + 1/b+c + 1/c+a = 90 . Tính M = a/b+c + b/a+c + c/a+b
Cho a+b+c=2007 và \(\frac{1}{a+b}\)+\(\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\).tính giá trị biểu thức sau:S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho a+b+c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+d}=\frac{1}{90}\)
Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho a+b+c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)=\(\frac{1}{90}\)
tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Bài 1 : Cho a+b+c = 2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
Tính S = \(\frac{a}{a+b}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho a+b+c = 2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)tính giá trị biểu thức \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho a + b + c = 2019 và 1/a+b + 1/a+c + 1/b+c = 1/2019. Tính giá trị của biểu thức S = a/b+c + b/a+c + c/a+b
Cho:a+b+c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)