cho a+b+c=0 CMR:
\(\left(ab+bc+ca\right)^2=a^2\cdot b^2+b^2\cdot c^2+c^2\cdot a^2\)\(a^4+b^4+c^4=2\left(a\cdot b+b\cdot c+c\cdot a\right)^2\)Chứng minh \(a^5\cdot\left(b^2+c^2\right)+b^5\cdot\left(a^2+c^2\right)+c^5\cdot\left(a^2+b^2\right)=\frac{1}{2}\cdot\left(a^3+b^3+c^3\right)\cdot\left(a^4+b^4+c^4\right)\)với \(a+b+c=0\)
Ai giúp mình làm bài này nhanh và đúng nhất, mình sẽ like nha!
rút gọn phân thức\(\frac{a^2\cdot\left(b-c\right)+b^2\cdot\left(c-a\right)+c^2\cdot\left(a-b\right)}{a^4\cdot\left(b^2-c^2\right)+b^4\cdot\left(c^2-a^2\right)+c^4\cdot\left(a^2-b^2\right)}\)
Cho a,b khác 0 thỏa mãn a+b=1
a, \(\frac{a}{b^3-1}\)+\(\frac{b}{a^3-1}\)=\(\frac{2\cdot\left(a\cdot b-2\right)}{a^2\cdot b^2+3}\)
b,\(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\cdot\left(b-a\right)}{a^2\cdot b^2+3}\)
Rút gọn các phân thức sau
a) \(A=\frac{a^2\cdot\left(b-c\right)+b^2\cdot\left(c-a\right)+c^2\cdot\left(a-b\right)}{a\cdot b^2-a\cdot c^2-b^3+b\cdot c^2}\)
b) \(B=\frac{x^3+y^3+z^3-3\cdot x\cdot y\cdot z}{\left(x+y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Cho \(\hept{\begin{cases}a\cdot\left(b^2+c^2\right)+b\cdot\left(c^2+a^2\right)+c\cdot\left(a^2+b^2\right)+2abc=0\\a^3+b^3+c^3=1\end{cases}}\)Tính A = \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
Cho \(\hept{\begin{cases}a\cdot\left(b^{2+c^2}\right)+b\cdot\left(b^2+c^2\right)+c\left(a^2+b^2\right)+2abc=0\\a^{3+}b^3+c^3=1\end{cases}Tính}A=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\left(a,b,c#0\right)\)
Bài 1:Phân tích đa thức thành nhân tử
a) 2x4+3x3-9x2-3x2+2
b) \(a\cdot\left(b+c\right)\cdot\left(b^2-c^2\right)+b\cdot\left(a+c\right)\cdot\left(c^2-b^2\right)+c\cdot\left(a+b\right)\cdot\left(a^2-b^2\right)\)
Bài 2: Cho x-y=12. Tính A=x3-y3-36xy
Giúp mình nhanh nhé
Cho a,b,c đôi một khác nhau
Tính P=\(\frac{a^2}{\left(a-b\right)\cdot\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\cdot\left(b-a\right)}+\frac{c^2}{\left(c-b\right)\cdot\left(c-a\right)}\)