\(\frac{a}{b}=\frac{a\left(b+2015\right)}{b\left(b+2015\right)}=\frac{ab+2015a}{b\left(b+2015\right)}\)
\(\frac{a+2015}{b+2015}=\frac{b\left(a+2015\right)}{b\left(b+2015\right)}=\frac{ab+2015b}{b\left(b+2015\right)}\)
TH1: a = b
=> ab+2015a = ab+2015b
=> \(\frac{a}{b}=\frac{a+2015}{b+2015}\)
TH2: a > b
=> ab+2015a > ab+2015b
=> \(\frac{a}{b}>\frac{a+2015}{b+2015}\)
TH3: a < b
=> ab+2015a < ab+2015b
=> \(\frac{a}{b}
Ta có:\(\frac{a}{b}=\frac{a.\left(b+2015\right)}{b.\left(b+2015\right)}=\frac{ab+a.2015}{b.\left(b+2015\right)}\)
\(\frac{a+2015}{b+2015}=\frac{b.\left(a+2015\right)}{b.\left(b+2015\right)}=\frac{ab+b.2015}{b.\left(b+2015\right)}\)
Xét a>b=>a.2015>b.2015
=>\(\frac{ab+a.2015}{b.\left(b+2015\right)}>\frac{ab+b.2015}{b.\left(b+2015\right)}\)
=>\(\frac{a}{b}>\frac{a+2015}{b+2015}\)
Xét a=b=>a.2015=b.2015
=>\(\frac{ab+a.2015}{b.\left(b+2015\right)}=\frac{ab+b.2015}{b.\left(b+2015\right)}\)
=>\(\frac{a}{b}=\frac{a+2015}{b+2015}\)
Xét a<b=>a.2015<b.2015
=>\(\frac{ab+a.2015}{b.\left(b+2015\right)}