Cho a,b là các só thực thỏa mãn điều kiện: (a-1)^2+(b-2)^2=5. CM: a+2b<=10
Cho a,b thuộc N thỏa mãn điều kiện 2a2+a=3b2+b
Chứng minh rằng a-b và 2a+2b+1 đều là số chính phương
cho các số a,b,c dương thỏa mãn điều kiện a+b+c=3 chứng minh \(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a.}>=1\)
Bài1: Giải phương trình sau:
(x2+5)(x2+10x)=6(2x-1)2
Bài 2:
a, Cho 1<=a,b,c<=3 thỏa mãn a2+b2+c2=19. Tìm giá trị nhỏ nhất của E=a+b+c.
b, Cho x,y,z>0 thỏa mãn điều kiện (x+y)(y+z)(z+x)=8. Chứng minh rằng (x+2y+z)(y+2z+x)(z+2y+x)>=64.
Bài 4: Cho các số tự nhiên a,b thỏa mãn điều kiện 2a2+a=6b2+b. Chứng minh rằng a-b, 2a+2b,2a+2a+1 đều là các số chính phương.
Cho ba số \(a,b,c\) thỏa mãn điều kiện \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\) và \(a+b+c=abc\). Chứng minh rằng: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
a)Chứng minh rằng :
\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
b) cho a,b,c là 3 số dương thỏa mãn điều kiện \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=2\)
tìm giá trị lớn nhất của tích (a+b)(b+c)(c+a)
a)Cho các số thực không âm a,b,c thỏa mãn điều kiện a+b+c=1
cm: \(a^3+b^3+c^3\le\frac{1}{8}+a^4+b^4+c^4\)
b)Cho a,b,c là các số thực thỏa mãn a+b+c=1. Chứng minh:
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
Cho các số dương a,b,c thoả mãn điều kiện a+b+c=3. Chứng minh rằng: \(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\ge3\sqrt{5}\)
Cho hai số thức thỏa mãn: a + b ≤ 2
Chứng minh: (2+a)/(1+a) + (1-2b)/(1+2b) ≥ 8/7