ta có a^2+b^2= (a+b)^2 -2ab chia hết cho 7 nên avà b đều chia hết cho 7
ta có a^2+b^2= (a+b)^2 -2ab chia hết cho 7 nên avà b đều chia hết cho 7
cho a và b là các số tự nhiên thỏa mãn a^2+b^2 chia hết 7. chứng minh rằng a và b đều chia hết cho 7
Cho a, b là các số tự nhiên thỏa mãn điều kiện: \(a^2+b^2⋮7\).
Chứng minh rằng cả a và b đều chia hết cho 7.
Cho các số tự nhiên a và b . chứng minh rằng :
a, Nếu a2 + b2 chia hết cho 3 thì a và b chia hết cho 3
b,Nếu a2 + b2 chia hết cho 7 thì a và b chia hết cho 7
với a,b là các số nguyên, chứng minh rằng nếu 6a^2+5ab-16b^2 chia hết cho 7 thì a^4-b^4 chia hết cho 7
cho các số tự nhiên a và b Chứng minh rằng
a) neu a2+b2chia hết cho 3 thì a và b chia hết cho 3
b) nếu a2+b2chia hết cho 7 thì a và b chia hết cho 7
1.Cho bốn số nguyên dương a,b,c,d thỏa mãn ab=cd.Chứng minh rằng \(a^5+b^5+c^5+d^5\)là hợp số.
2.Cho các số tự nhiên a và b.Chứng minh rằng:
a, Nếu\(a^2+b^2\)chia hết cho 3 thì a và b chia hết cho 3.
b, Nếu\(a^2+b^2\)chia hết cho 7 thì a và b chia hết cho 7.
3.Cho các số nguyên a,b,c.Chứng minh rằng:
a, Nếu a+b+c chia hết cho 6 thì \(a^3+b^3+c^3\)chia hết cho 6.
b, Nếu a+b+c chia hết cho 30 thì \(a^5+b^5+c^5\)chia hết cho 30
cho a , b thuộc N .Chứng minh 3a + b chia hết cho 7 chỉ khi 5a^2 + 15ab - b^2 chia hết cho 49
Chứng minh:
a) n4 +7. (7 + 2n2 ) chia hêt 64 V n là số nguyên lẻ
b) Cho a,b thuộc Z. Chứng minh 2a+b chia hết 7 (=) 32 + 10ab - 8b2 chia hết cho 49
Chứng minh:
a) 24n -1 chia hết cho 15 với mọi n thuộc N
b) 3663 -1 chia hết cho 7 và không chia hết cho 37
c) n4 -10n2 +9 chia hết cho 384 với mọi n lẻ, n thuộc Z
d) a3 -a chia hết cho 3
e) a7 -a chia hết cho 7