cho a b là các số thực thỏa mãn\(2a^2\)+ \(\dfrac{\text{1}}{\text{a^2}}\)+\(\dfrac{\text{b^2}}{\text{4}}\)=4
tìm GTNN của biểu thức M=ab
cho a b là các số thực thỏa mãn a+b ≤2 tìm giá trị biểu thức
A=\(\dfrac{\text{1}}{\text{a^2+b^2}}+\dfrac{\text{1}}{\text{ab}}+ab\)
Cho a, b, c là các số thực dương thay đổi thỏa mãn điều kiện: a+b+c=1.
Tìm GTNN của biểu thức:
M=14(\(a^2\)+\(b^2\)+\(c^2\))+\(\dfrac{ab+ac+bc}{a^2b+b^2c+c^2a}\)
cho a,b,c là 3 số ≠ 0 thỏa mãn a+b+C=2016 và \(\dfrac{\text{1}}{\text{a}}\)+\(\dfrac{\text{1}}{\text{b}}\)+\(\dfrac{\text{1}}{\text{c}}\)=\(\dfrac{\text{1}}{\text{2016}}\)
CMr: trong ba số a,b,c tồn tại 2 số đối nhau
1.Tìm GTLN của các biểu thức:
a,A= -x - 4y2 + 6x - 8y + 3
b, B= x4 - 6x3 + 15x2 - 20x - 15
2.Cho các số thực a,b thỏa mãn: 2a2 + \(\dfrac{b^2}{4}\)+\(\dfrac{1}{a^2}\)=4. Tìm GTNN và GTLN của A= ab+2019
giúp mình với ạ, mình cảm ơn
Cho 2 biểu thức:
A=\(\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}\) B=\(\dfrac{2x+1}{x^2-4}\)
a) Tính giá trị của biểu thức B khi x thỏa mãn \(|4x-2|=6\)
b)Rút gọn biểu thức A
c)Tìm x để P=\(\dfrac{2A}{B}>1\)
1. Cho a, b, c, d thỏa mãn: abcd=1.
Tính gía trị biểu thức:
M= \(\dfrac{a}{abc+ab+a+1}+\dfrac{b}{bcd+bc+b+1}+\dfrac{c}{cda+cd+1}+\dfrac{d}{dab+da+d+1}\)
2. Cho các số a, b, c, d thỏa mãn: 0 ≤a, b, c, d ≤1.
Tìm giá trị lớn nhất của biểu thức:
N\(=\dfrac{a}{bcd+1}+\dfrac{b}{cda+1}+\dfrac{c}{dab+1}+\dfrac{d}{abc+1}\)
3. Cho tam giác ABC nhọn có các đường cao AM, BN, CP cắt nhau tại H.
a) Chứng minh: \(AB.BP+AC.CN=BC^2\)
b) Cho B, C cố định A thay đổi. Tìm vị trí điểm A để: MH,MA đạt max ?
c) Gọi S,S1,S2,S3 lần luợt là diện tích các tam giác ABC, APN, BMP, CMN.
Chứng minh: \(S_1.S_2.S_3\) ≤ \(\dfrac{1}{64}S_3\)
Câu 1:Cho biểu thức P=\(\text{}\text{}\text{}\text{}\left(\dfrac{x}{4-x^2}+\dfrac{2}{x-2}-\dfrac{1}{x+2}\right):\left(1-\dfrac{x+1}{x+2}\right)\)
a) Rút gọn biểu thức P
b) Tính giá trị của P khi cho \(\left|x\right|\)=1
c)Tìm x để P >0
d)Tìm x để P = \(\dfrac{1}{x+1}\)
Câu 2:Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền của tam giác thành hai đoạn có độ dài như sau: HB = 25cm, Hc = 36cm. Vậy đường cao AH có độ dài là
tính giá trị của biểu thức
Cho \(4a^2+b^2=\text{5ab}\) và \(2a>b>0\) , tính giá trị của A \(=\dfrac{ab}{4a^2-b^2}\)