Cho a và b là hai số thực dương thỏa mãn điều kiện: a2006 +b2006= a2007 +b2007 = a2008 + b2008. Hãy tính tổng S= a2009 + b2009
a)tìm các cặp số nguyên dương x,y thỏa mãn: 2x^2+3y^2-5xy-x+3y-4=0
b) các số x,y,z thỏa mãn điều kiện x^2+y^2+z^2=2014. tìm giá trị nhỏ nhất của M=2xy-yz-xz
Cho các số thực dương a, b thỏa mãn điều kiện 1<=a<= 2; 1<=b<= 2
TÌM giá trị lớn nhất của biểu thức |
P=a^2+b^2-(1/a+1/b)-4a-13b/4+4
Bài 1:Cho a,b,c là các số dương thay đổi thỏa mãn điều kiện :
\(5a^2+2abc+4b^2+3c^2=60\)
Tìm giá trị lớn nhất của biểu thức: \(A=a+b+c\)
Bài 2:
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn:
\(x^2+xy-2013x-2014y-2015=0\)
Cho x, y, a, b là các số thực thỏa mãn đồng thời các điều kiện: \(x^2+y^2=1\) và \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\). Chứng minh rằng \(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
Bài1: Giải phương trình sau:
(x2+5)(x2+10x)=6(2x-1)2
Bài 2:
a, Cho 1<=a,b,c<=3 thỏa mãn a2+b2+c2=19. Tìm giá trị nhỏ nhất của E=a+b+c.
b, Cho x,y,z>0 thỏa mãn điều kiện (x+y)(y+z)(z+x)=8. Chứng minh rằng (x+2y+z)(y+2z+x)(z+2y+x)>=64.
Bài 4: Cho các số tự nhiên a,b thỏa mãn điều kiện 2a2+a=6b2+b. Chứng minh rằng a-b, 2a+2b,2a+2a+1 đều là các số chính phương.
1)tìm các cặp số nguyên x;y thỏa mãn \(x^3-xy-3x+2y+1=0\)0
2)với a;b là các số thực không âm thỏa mãn \(a+b=2\sqrt{3}\)tìm max của biểu thức
\(P=\left(1+a^4\right)\left(1+b^4\right)\)
a)Cho các số thực không âm a,b,c thỏa mãn điều kiện a+b+c=1
cm: \(a^3+b^3+c^3\le\frac{1}{8}+a^4+b^4+c^4\)
b)Cho a,b,c là các số thực thỏa mãn a+b+c=1. Chứng minh:
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
Cho a,b là các số thực thỏa mãn điều kiện a^2+b^2=4+ab
Chứng minh 8/3<=a^2+b^2<=8