Vì ( a - b )2 \(\ge\)0 \(\forall\)a,b \(\Rightarrow a^2+b^2\ge2ab\). Mà ab = 4 \(\Rightarrow a^2+b^2\ge8\)
\(\Rightarrow\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\ge\frac{\left(a+b-2\right).8}{a-b}\)
Đặt t = a + b \(\Rightarrow t\ge4\)( Do \(a+b\ge2\sqrt{ab}=4\))
\(\frac{\left(t-2\right).8}{t}=\frac{8t-16}{t}=8-\frac{16}{t}\)
Vì \(t\ge4\Rightarrow\frac{16}{t}\le\frac{16}{4}\Rightarrow-\frac{16}{t}\ge-4\Rightarrow\left(8-\frac{16}{t}\right)\ge8-4=4\)
\(\Rightarrow\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\ge4\)Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a,b=4\end{cases}\Leftrightarrow a=b=2}\)
Vậy \(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)min \(\Leftrightarrow a=b=2\)