CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)
CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)
CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị bằng : С. 4 A. 10 В. 18 D. 8
CH 4.Trong không gian Oxyz cho 2 vecto a= (3; 1; 2) và b= (2; 0; -1); khi đó vectơ 2a-b có độ dài bằng : А. 3/5 В. 29 С. M D. S/5
CH 5. Cho hình bình hành ABCD với A (-1;0;2), B(3;4;0) D (5;2;6). Tìm khẳng định sai. A. Tâm của hình bình hành có tọa độ là (4;3;3) B. Vecto AB có tọa độ là (4;-4;-2) C. Tọa độ của điểm C là (9;6;4) D. Trọng tâm tam giác ABD có tọa độ là (3;2;2)
Cho ba vectơ: a → = (2; -5; 3), b → = (0; 2; -1), c → = (1; 7; 2) Tính tọa độ của vectơ d → = 4 a → - 1/3 b → + 3 c →
Cho a, b là hai số thực đồng thời thỏa mãn b – a – 2 = 0 và 3 a . 2 b = 3 - 2 . Tính b - 5 a
Nếu a 3 / 3 > a 2 / 2 và log b ( 3 / 4 ) < log b ( 4 / 5 ) thì:
A. 0 < a < 1, b > 1 B. 0 < a < 1, 0 < b < 1
C. a > 1, b > 1 D. a > 1, 0 < b < 1
Cho a, b là hai số thực khác 0. Biết 1 125 a 2 + 4 a b = 625 3 3 a 2 - 10 a b . Tính tỉ số a b .
A. 76 3
B. 4 21
C. 2
D. 76 21
Cho a , b , c , x , y , z là các số thực thay đổi thỏa mãn ( x + 1 ) 2 + ( y + 1 ) 2 + ( z - 2 ) 2 = 4 và a + b + c = 6 . Tính giá trị nhỏ nhất của P = ( x - a ) 2 + ( y - b ) 2 + ( z - c ) 2 . .
Trong không gian Oxyz, cho ba điểm A (3; 0; 0), B (1; 2; 1) và C (2; -1; 2). Biết mặt phẳng qua B, C và tâm mặt cầu nội tiếp tứ diện OABC có một vectơ pháp tuyến là (10; a; b). Tổng a + b là:
A. -2
B. 2
C. 1
D. -1
Cho A(4; 0; 0), B(0; 2; 0), C(0; 0; 1) và D(2; 2; 0). Có bao nhiêu tam giác vuông có ba đỉnh là ba trong số 5 điểm O, A, B, C, D.
Nếu a 3 / 3 > a 2 / 2 và log b 3 / 4 < log b 4 / 5 thì:
A. 0 < a < 1, b > 1 B. 0 < a < 1, 0 < b < 1
C. a > 1, b > 1 D. a > 1, 0 < b < 1