Tham khảo tại đây : Câu hỏi của Huỳnh Kim Bích Ngọc - Toán lớp 8 - Học toán với OnlineMath
Tham khảo tại đây : Câu hỏi của Huỳnh Kim Bích Ngọc - Toán lớp 8 - Học toán với OnlineMath
Cho a, b, c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Hãy tính: \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Giúp tớ với ạ~
Cho a , b , c là 3 số từng đôi một khác nhau và thỏa mãn :\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\). CMR :
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\).
Cho \(\left(a+b+c\right)^2=a^2+b^2+c^2.\) C/m \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=1\)
cho a;b;c là các số thực dương thỏa mãn abc=1
Tìm Min của P=\(\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}+\frac{b^2}{\left(bc+2\right)\left(2bc+1\right)}+\frac{c^2}{\left(ac+2\right)\left(2ac+1\right)}\)
cho các số thực a,b,c không âm thỏa mãn không có hai số nào đồng thời =0và a2+b2+c2=2(ab+bc+ca).CMR
\(\sqrt{\frac{2ab}{a^2+b^2}}\)+\(\sqrt{\frac{2bc}{b^2+c^2}}\)+\(\sqrt{\frac{2ac}{a^2+c^2}}\)\(\ge\)1
Cho a,b,c,d>0 chứng minh: \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}>1\)
Cho a,b,c là 3 số thực dương thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tìm GTLN của biểu thức P=\(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ac+2a^2}}\)
Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Chứng minh rằng: \(\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}+\frac{b^2}{\left(bc+2\right)\left(2bc+1\right)}+\frac{c^2}{\left(ac+2\right)\left(2ac+1\right)}\ge\frac{1}{3}\)\(\frac{1}{3}\)
Cái này dễ nè : cho x > y > 0 và 2x2 + 2y2 = 5xy. Tính E = \(\frac{x+y}{x-y}\)
b) Cho a,b,c đôi một khác nhau, thỏa mãn ab + bc + ac = 1.Tính
1. A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
2. B = \(\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)