Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}=3\) (abc=1) (tự c/m)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\)
=>ab+bc=-ca => (ab+bc)3=-c3a3
=>a3b3+b3c3+3a2b2.bc+3ab.b2c2=-c3a3
=>a3b3+b3c3+3ab2c(ab+bc)=-c3a3
=>a3b3+b3c3+3ab2c.(-ca)=-c3a3
=>a3b3+b3c3-3a2b2c2=-c3a3
=>a3b3+b3c3+c3a3=3a2b2c2 = 3 (do abc=1)
Vậy F=3.3=9